An Analytical Framework for Assessing the Spatial and Economic Impacts of Transport Network Improvements – the Egnatia Motorway

Carsten Schürmann
Stefano Panebianco

Networks for Mobility / Parallel session IV
Stuttgart, 19 September 2002
Overview

1. Overcoming regional disparities through new transport links?
2. Three analysis steps for assessing the impacts of transport network improvements
3. The case study: The Egnatia Motorway in Northern Greece
4. Conclusions
New transport links for Europe – the trans-European Transport Networks (TETN)

The European Union hopes to contribute to reducing the disparities between regions by the development of the **trans-European Transport Networks (TETN)**.

The **TETN** are one of the most ambitious initiatives of the European Union since its foundation.

The **masterplans** for rail, roads, water-ways, ports and airports require public and private investment between 400 and 500 billion € until the year 2010.
Overcoming regional disparities through new transport links?

Critics doubt that the TETN will reduce disparities between European regions:

- Many of the new connections do not link peripheral regions to the core but central regions with each other.

- The impact of the new connections may be ambiguous: A new motorway or high-speed rail link between a peripheral and a central region may make it easier for producers in the peripheral region to market their products in large cities, but it may also expose their formerly secure regional monopolies to the competition of more advanced producers from the centre.
Overview

1. Overcoming regional disparities through new transport links?

2. Three analysis steps for assessing the impacts of transport network improvements

3. The case study: The Egnatia Motorway in Northern Greece

4. Conclusions
Interactions between transport system and regional development
Analysis step I: Travel times

One of the most frequently used indicators for measuring the effects of transport network improvements are travel times. In this study, we display travel times i) in tables, ii) as isochrones, iii) through average travel time savings.
The potential type accessibility takes into consideration both the distance/traveltime to destinations ("impedance function") and their size or "mass" ("activity function"). In this study, we employ:

- population as mass term,
- car travel time as impedance function.
In order to anticipate the effects of new transport links on the regional economic development, it is possible to apply simulation models reproducing economic, demographic and accessibility-related variables and interrelations. In this study we make use of the SASI-model, developed as part of the EUNET project.
Overview

1. Overcoming regional disparities through new transport links?
2. Three analysis steps for assessing the impacts of transport network improvements
3. The case study: The Egnatia Motorway in Northern Greece
4. Conclusions
Via Egnatia – 680 km of new motorway
The Egnatia Motorway: Basic Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>680 km</td>
</tr>
<tr>
<td>Completed before 1994</td>
<td>94 km</td>
</tr>
<tr>
<td>Completed by 2002</td>
<td>394 km</td>
</tr>
<tr>
<td>Currently under construction</td>
<td>190 km</td>
</tr>
<tr>
<td>Ready to be tendered / in the design phase</td>
<td>96 km</td>
</tr>
<tr>
<td>Type of construction</td>
<td>Closed dual carriage way; paved width of 24.5 metres</td>
</tr>
<tr>
<td>Bridges</td>
<td>1650 (app. 40 km)</td>
</tr>
<tr>
<td>Tunnels</td>
<td>76 (app. 49.5 km)</td>
</tr>
<tr>
<td>River crossings</td>
<td>43</td>
</tr>
<tr>
<td>Railway crossings</td>
<td>11</td>
</tr>
<tr>
<td>Interchanges</td>
<td>50</td>
</tr>
<tr>
<td>Total funding (approved so far)</td>
<td>3.2 billion Euro</td>
</tr>
</tbody>
</table>
The Egnatia Motorway – some impressions

section Komotini-Mesti (10/2000)

Kavala Bypass (04/2001)

Section Ladochori-Likopodi (summer 2002)

Source: Egnatia Odos S.A., 2001
Transport Network Scenarios applied for identifying the impacts of new transport links in Greece

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year (2001)</td>
<td>Base scenario</td>
</tr>
<tr>
<td>Via Egnatia</td>
<td>Base scenario plus full Via Egnatia implementation</td>
</tr>
<tr>
<td>Via Egnatia and P.A.T.H.E.</td>
<td>Base scenario plus full Via Egnatia and P.A.T.H.E. Corridor implementation</td>
</tr>
<tr>
<td>Greek motorways</td>
<td>Full implementation of all Greek TEN road projects</td>
</tr>
<tr>
<td>TEN/TINA</td>
<td>Full implementation of all TEN/TINA road projects</td>
</tr>
</tbody>
</table>
Analysis step I: Travel times
Reduction of travel times (I)
Two examples

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>Via Egnatia</th>
<th>Via Egnatia-P.A.T.H.E.</th>
<th>Greek Motorways</th>
<th>TEN/TINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igoumenitsa-Athens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel times (minutes)</td>
<td>437</td>
<td>414</td>
<td>410</td>
<td>345</td>
<td>345</td>
</tr>
<tr>
<td>Travel time reduction (vs. Base scenario, minutes)</td>
<td>0</td>
<td>-23</td>
<td>-28</td>
<td>-93</td>
<td>-93</td>
</tr>
<tr>
<td>Travel time reduction (vs. Base scenario, percent)</td>
<td>0</td>
<td>-5,3</td>
<td>-6,4</td>
<td>-21,3</td>
<td>-21,3</td>
</tr>
<tr>
<td>Alexandroupolis-Athens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel times (minutes)</td>
<td>648</td>
<td>533</td>
<td>490</td>
<td>488</td>
<td>488</td>
</tr>
<tr>
<td>Travel time reduction (vs. Base scenario, minutes)</td>
<td>0</td>
<td>-115</td>
<td>-159</td>
<td>-160</td>
<td>-160</td>
</tr>
<tr>
<td>Travel time reduction (vs. Base scenario, percent)</td>
<td>0</td>
<td>-17,7</td>
<td>-24,5</td>
<td>-24,7</td>
<td>-24,7</td>
</tr>
</tbody>
</table>
Reduction of travel times (II)

Isochrones: the example of Thessaloniki

Base scenario (2001)

Via Egnatia scenario
Reduction of travel times (III)
Via Egnatia vs. Base scenario. Travel Time Differences

Average travel time reduction to all Greek NUTS3 regions

- ... < 20
- 20 - 30
- 30 - 40
- 40 - 50
- 50 - 60
- 60 - 70
- 70 - 80
- 80 - 90
- 90 - 100
- 100 - 120
- 120 - 130
- 130 - 140
- 140 < ...
Analysis step II: Accessibility
Impact of Via Egnatia on Accessibility (I)

Access to population by car for NUTS 3 regions.
Relative differences in percentage points (GR current situation = 100)
Via Egnatia vs. Base Scenario
Impact of Via Egnatia on Accessibility (II)

Access to population by car for Greek regions (NUTS 3) (GR current situation =100).
Base Scenario against Via Egnatia Scenario and full TEN/TINA Scenario.
Impact of Via Egnatia on accessibility (III): Gini Coefficients

<table>
<thead>
<tr>
<th>Scenario</th>
<th>EU regions</th>
<th>Greek regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base scenario</td>
<td>0.324</td>
<td>0.328</td>
</tr>
<tr>
<td>Via Egnatia</td>
<td>0.323</td>
<td>0.327</td>
</tr>
<tr>
<td>Via Egnatia / P.A.T.H.E.</td>
<td>0.323</td>
<td>0.327</td>
</tr>
<tr>
<td>Greek motorways</td>
<td>0.323</td>
<td>0.321</td>
</tr>
<tr>
<td>TEN/TINA</td>
<td>0.321</td>
<td>0.321</td>
</tr>
</tbody>
</table>

1,083 EU NUTS-3 regions
54 Greek NUTS-3 regions
Analysis step III: Socio-economic impacts
The SASI-Model
Socio-economic and Spatial Impacts of Transport Infrastructure Investments and Transport System Improvements
Impacts of the new TEN road & rail links on the accessibility of European regions
TEN-Scenario vs. Do-Nothing-Scenario
Relative difference (%), 2016
Impacts of the new TEN road & rail links on the development of GDP in Europe
TEN-Scenario vs. Do-Nothing-Scenario
Relative difference (%), 2016
Expected development of GDP in Europe (EU=100)
TEN scenario, Change 1996-2016

difference in percentage points (EU=100)

2016 worse than 1996
-30 < -20
-20 < -10
-10 < -1
-1 < 1
1 < 10
10 < 20
20 < 30
30 < ...

2016 better than 1996
Overview

1. Overcoming regional disparities through new transport links?
2. Three analysis steps for assessing the impacts of transport network improvements
3. The case study: The Egnatia Motorway in Northern Greece
4. Conclusions
Conclusions I: Overcoming disparities?
The Egnatia case study

Analysis step I: Travel Times
Particularly the regions at the end points of the Via Egnatia route will experience travel time savings.

Analysis step II: accessibility
The relative increments in accessibility of the Northern Greek regions will remain rather small unless also further motorway projects, namely the P.A.T.H.E. motorway, are being implemented. However, neither Via Egnatia nor the total of the TEN motorway projects will be able to clearly reduce the accessibility disparities within Greece.

Analysis step III: Socio-economic outcomes
The Greek regions will belong to the European regions with relatively high GDP gains induced by transport network improvements. However, if the changes are standardised (EU=100), Northern Greece is expected to fall further behind the European average.
Conclusions II: The three-step analytical framework

- The proposed three step analysis of the impacts of transport networks improvements leads to differentiated results: In the Via Egnatia case, traveltimes are clearly reduced, while the related gains in accessibility and GDP-development remain rather modest.

- In public and political discussions, investments into new transport links are often assessed on the basis of traveltime savings only. Hierarchical multi step analyses of spatial and socio-economic impacts as proposed in this paper might be helpful for achieving a more comprehensive assessment of planned transport network improvements.
More information

SASI Homepage:
http://irpud.raumplanung.uni-dortmund.de/
 ... pro/sasi/sasi.htm
 ... pro/peri/peri_e.htm

IASON Homepage:
http://www.inro.tno.nl/iason/

IRPUD Homepage:
http://irpud.raumplanung.uni-dortmund.de/irpud/